
Intel Corporation 1

An Overview of GEO

December 9, 2015

Project Lead: Jonathan Eastep, PhD & Principal Engineer
jonathan.m.eastep@intel.com

(Global Energy Optimization)

mailto:jonathan.m.eastep@intel.com

Intel Corporation 2

GEO Project Scope and Goals

 GEO is an open source, scalable, extensible runtime and
framework for power management in HPC systems

 Provides extensibility via plug-ins + advanced default functionality

 Developing GEO through CORAL NRE project with
potential deployment on Aurora system at Argonne

 Goal1: unlock more performance in power-limited systems

 Goal2: accelerate innovation in HPC power management

 Enables researchers to focus effort on algorithms (via plug-ins) not
re-engineering distributed runtime infrastructure

 Provides a streamlined path for deploying new ideas

 Product-grade framework w/ development+hardening backed by Intel

 Drives codesign of power and performance management features in
Intel processors for better results w/ runtimes like GEO

Intel Corporation 3
3

Acknowledgements

GEO Core Team (Intel)

 Fede Ardanaz

 Chris Cantalupo

 Jonathan Eastep

 Richard Greco

 Stephanie Labasan

 Steve Sylvester

 Reza Zamani

 … and hiring!

Collaborators (Intel)

 David Lombard

 Tryggve Fossum

 Al Gara

Collaborators (External)

 Argonne (CORAL)

 LLNL (Rountree)

 … and expanding!

Intel Corporation 4

Relationship to Standard Power APIs

 GEO is a job-level power management framework

 Manages the compute nodes in a job to a job power bound

 … while maximizing performance or other objective functions

 With work, GEO could fit under/above other power APIs

 GEO currently interacts with other SW components through its
own interfaces (next slide)

 We’re not positioning our external interfaces as standards

 Emphasis on providing an extensible framework and
advanced out-of-the-box power management strategies

 Builds on “Auto-Tuner” machine learning, control system, and
optimization technology Intel has been researching for 4 years

Intel Corporation 5

Resource Manager
3rd parties

Job Power Manager =

GEO

Intel GEO team

User Interface
(Work w/ RMs &

Schedulers)

PCU RAPL and Perf
Counter Interfaces
(Work w/ Intel GEO team to

enhance)

Scheduler =
Power-Aware Scheduler
(Work w/ Intel team to implement)

Job Power Manager Interface
(Work w/ RMs & Schedulers)

Application
Interface

Intel PM Arch team

Owner

Admin Interface
(Work w/ RMs &

Schedulers)

GEO Interfaces / Integration Architecture

Intel Corporation 6

 Comprehend and mitigate dynamic load imbalance by globally
coordinating frequency and power allocations across nodes

 Leverage application-awareness and learning to recognize
patterns in application (phases), then exploit patterns to
optimize decisions

 React to phase changes at aggressive time scales (low
milliseconds) and rapidly redistribute limited power to
performance-critical resources

 Tackle the scale challenges prior techniques have swept under
the rug to enable holistic joint optimization of power policy
across the job

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

Advanced Auto-Tuner Capabilities

Intel Corporation 7
7

Auto-Tuner Prototype Results Summary

Speedup derives from two factors: correcting load imbalance across nodes and node-local spatio-
temporal energy scheduling optimizations exploiting phases

Bars represent average results over a range of assumptions about how much power the job is
allocated and how much load imbalance is present

Experimental setup carefully emulates large-cluster load imbalance on a small cluster

Results collected while running on Xeon hardware (not simulation)

1.18x
1.31x

1.17x 1.22x

0

0.5

1

miniFE FFT IS NEKbone

Speedup from Auto-Tuner at ISO Power

No Auto-Tuner Auto-Tuner

Intel Corporation 8

Presentation Outline

GEO Project Overview

GEO Architecture Overview

Open Source Project Details (if time allows)

Deep Dive: Application Feedback Interface

Intel Corporation 9

GEO Architecture Overview

Intel Corporation 10
10

GEO Hierarchical Architecture

Scaling challenge is addressed via tree-
hierarchical design & hierarchical policy

 Each agent owns sub-problem: decide how
to divide/balance power among children

 Power/perf telemetry is scalably
aggregated so network traffic is minimal

 Tuning is globally optimized despite
distributed tuning: achieved through
Hierarchical-POMDP learning techniques

GEO tree runs in 1 reserved core per CN

 Leaf & non-leaf agents run in these cores

 Enables fast reaction times, deep analysis

 Overhead is negligible in manycore chips

 Designing for minimal memory footprint

CN ≡ Compute Node
(in compute node racks)

GEO manages job to a power budget and globally
coordinates frequency & power allocation decisions Root

Agent
……

…

Leaf
Agent

…

CN

Job

In-band MPI
based comm

Intel Corporation 11
11

Zoom-In on Leaf Agent

GEO

Learning

App APIs

Process 0 Process i

…

Phase
Perf

Policy
App APIs

Phase
Perf

Policy

Processor

PowerEnergy
Meters

Power budgeting inside the processor:
 Spatio-Temporal Energy Scheduling

(phase-adaptively allocate power
among RAPL power domains)

Event
Counters

Root
Agent

……
…

Leaf
Agent

…
CN

optional

Policy

Node
power
budget

Intel Corporation 12

Open Source Project Details

Intel Corporation 13

Team just completed first open source release on github

 Package Name: geopm (GEO power management)

 Release Goal: publish docs and interfaces for community review

 Non-Goal: feature-completeness

 Compatibility: Red Hat RHEL7 and SUSE SLES12 Linux distros

 Repository: view project and source code via
http://geopm.github.io/geopm/

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

GEOPM Open Source Release

http://geopm.github.io/geopm/

Intel Corporation 14

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

Release Notes

 Defined interfaces and architecture for integration in HPC SW stacks

 Nailed down our modular object-oriented design in C++11 (with C
interfaces to external components / application)

 Developed solid autotools build system and gtest/gcov test
infrastructure

 Delivered support for basic static power management functionality

 E.g. Uniform Frequency Static mode

 E.g. Hybrid Frequency Static mode (Pseudo Big Core / Little Core)

 No dynamic power management yet (still under construction)

 No Auto-Tuner load balancing modes yet

Intel Corporation 15

 WIP on community adoption of GEO
 [DONE] Spin up collaborations with Argonne and LLNL

 [WIP] Spin up collaborations with other national labs and universities

 [WIP] Pursue community feedback on interfaces and documentation

 [WIP] Joint research / publications with collaborators building on GEO

 WIP on the runtime for dynamic power management
 [DONE] MPI communications between levels of GEO runtime hierarchy

 [DONE] SLURM plug-in (initial development vehicle)

 [DONE] Application feedback interface implementation

 Recall: application markup is initially required for dynamic power mgmt modes

 Long-term goal is for GEO to automatically infer the info without the API

 [DONE] Extensibility in support for processor features

 [WIP] Extensibility in decision algorithms

Next Steps (Through Q1’16)

Intel Corporation 16

Deep Dive: Application Feedback
Interface

AOL

β

Input Output

Intel Corporation 17

Overview

 C interfaces provided in a lib that the app links against

 They resemble typical profiler interfaces

 Consist of annotation functions for programmers to
provide GEO info about app critical path and phases:

 Indicate where bulk synchronizations occur (points where load
imbalance results will result in degraded performance)

 Indicate where phase changes occur in an MPI rank (i.e. phase
entry and exit)

 Indicate hints specifying whether phases will be compute-,
memory-, or communication-intensive

 Indicate how much progress each MPI rank has made toward
completing the current phase (identify critical path)

Intel Corporation 18

Profiler Management / Reporting

int geopm_prof_create(

const char *name,

size_t table_size,

const char *sample_key,

MPI_Comm comm,

struct geopm_prof_c **prof);

int geopm_prof_destroy(

struct geopm_prof_c *prof);

int geopm_prof_region(

struct geopm_prof_c *prof,

const char *region_name,

long policy_hint,

uint64_t *region_id);

int geopm_prof_print(

struct geopm_prof_c *prof,

const char *file_name,

int depth);

Intel Corporation 19

Phase Markup / Bulk Sync Point

int geopm_prof_enter(

struct geopm_prof_c *prof,

uint64_t region_id);

int geopm_prof_exit(

struct geopm_prof_c *prof,

uint64_t region_id);

int geopm_prof_outer_sync(

struct geopm_prof_c *prof,

uint64_t region_id);

Intel Corporation 20

Progress Reporting (1)

 Interfaces provide two options for reporting progress:

 Special case (direct determination of critical path):

– Assume: MPI+OpenMP w/ statically scheduled parallel
regions

– Assume: Total work for each individual thread is known

– API computes rank’s progress as the min progress any thread
made toward completing its total work (this is a %)

 General case (estimation of critical path):

– Assume: MPI+X

– Assume: Total work is not known for each individual thread
but the total work across all threads is known

– API computes rank’s progress as sum of work completed on
all threads / total work all threads will perform (this is a %)

Intel Corporation 21

Progress Reporting (2)

int geopm_prof_progress(

struct geopm_prof_c *prof,

uint64_t region_id,

double fraction);

int geopm_omp_sched_static_norm(

int num_iter,

int chunk_size,

int num_thread,

double *norm);

double geopm_progress_threaded_min(

int num_thread,

size_t stride,

const uint32_t *progress,

const double *norm);

double geopm_progress_threaded_sum(

int num_thread,

size_t stride,

const uint32_t *progress,

double norm);

Intel Corporation 22

Example of Application Markup (1)

max_threads = omp_get_max_threads();

posix_memalign((void **)&progress, cache_line_size,

cache_line_size * max_threads);

memset(progress, 0, cache_line_size * max_threads);

norm = (double *)malloc(sizeof(double) * max_threads);

geopm_omp_sched_static_norm(num_iter, chunk_size,

max_threads, norm);

geopm_prof_region(prof, "main-loop",

GEOPM_POLICY_HINT_UNKNOWN, ®ion_id);

#pragma omp parallel default(shared) private(i, progress_ptr)

{

progress_ptr = progress + stride * omp_get_thread_num();

#pragma omp for schedule(static, chunk_size)

for (i = 0; i < num_iter; ++i) {

x += do_something(i);

(*progress_ptr)++;

if (omp_get_thread_num() == 0) {

thread_progress = geopm_progress_threaded_min(

omp_get_num_threads(), stride, progress, norm);

geopm_prof_progress(prof, region_id, thread_progress);

}

}

}

Intel Corporation 23

Example of Application Markup (2)

max_threads = omp_get_max_threads();

posix_memalign((void **)&progress, cache_line_size,

cache_line_size * max_threads);

memset(progress, 0, cache_line_size * max_threads);

norm = 1.0 / num_iter;

geopm_prof_region(prof, "main-loop",

GEOPM_POLICY_HINT_UNKNOWN, ®ion_id);

#pragma omp parallel default(shared) private(i, progress_ptr)

{

progress_ptr = progress + stride * omp_get_thread_num();

#pragma omp for schedule(static, chunk_size)

for (i = 0; i < num_iter; ++i) {

x += do_something(i);

(*progress_ptr)++;

if (omp_get_thread_num() == 0) {

thread_progress = geopm_progress_threaded_sum(

omp_get_num_threads(), stride, progress, norm);

geopm_prof_progress(prof, region_id, thread_progress);

}

}

}

Intel Corporation 24

PRIOR GOVERNMENT RIGHTS – Rights as provided under contract B609815

Coming Soon: Plug-In Interfaces

 Completion targeted for Q1’16 (hopefully early Q1)

 Platform plug-ins

 Provides high-level abstraction of low-level processor interfaces
for power & performance monitoring and control

 E.g. control registers for RAPL, P-states, event counters, etc.

 Simplifies porting to new Intel processors with new features (or
processors from other vendors)

 Decider plug-ins

 Enables researchers to extend GEO’s control algorithms

 E.g. site-specific power management strategies

 E.g. application-specific power management strategies

Intel Corporation 26

Backup Slides

Intel Corporation 27
27

Power Bounds

 Current strategies for managing power aggravate load imbalance

 Uniform node power caps expose frequency variation from manufacturing variation

 Uncoordinated Turbo/throttle decisions on nodes expose frequency variation

 Results are far from optimal

 Load imbalance is a big challenge

 Apps tend to do bulk synchronizations

 Performance is determined by last node
to arrive at bulk synchronization point

 Power is becoming a scarce resource
that must be managed carefully

 Future systems are expected to be
power-limited due to site limits

 Processors are power-limited due to
thermal design power limits

Intel Corporation 28
28

Comparison Against Theoretical Bounds

 Summary
 We achieved near-ideal benefits for most workloads with negligible losses vs. bounds
 But, we note non-negligible losses of benefit for Integer Sort

 X-axis is a parameter for how much load imbalance we inject into the system
 Root-cause of benefit losses: some is initial search time, most is control error due to noise
 IS is considerably noisier than FFT and miniFE; working to improve handling of noise more

9
6

.2
%

9
9

.1
%

9
8

.2
%

9
7

.8
%

9
6

.4
%

0
0.2
0.4
0.6
0.8

1
1.2

0% 10% 20% 30% 40%

Ef
fi

ci
e

n
cy

% Delay

Example of IS Losses w/ 90W Budget Config

Intel Corporation 29
29

GEO Advanced Power Balancing Modes

Can configure objective function for how
GEO will dynamically mitigate imbalance
 a) Equalize processor frequency
 b) Equalize node’s app progress

(steer power to critical path)

Root
Agent

……
…

Leaf
Agent

…

CN

